Recently published - More

Abstract

Local flow patterns determine the uneven distribution of atherosclerotic lesions. This research aims to elucidate the mechanism of regulation of nuclear translocation of Yes-associated protein (YAP) under oscillatory shear stress (OSS) in the atheroprone phenotype of endothelial cells (ECs). We report here that OSS led to tyrosine phosphorylation and strong, continuous nuclear translocation of YAP in ECs that is dependent on integrin α5β1 activation. YAP overexpression in ECs blunted the anti-atheroprone effect of an integrin α5β1–blocking peptide (ATN161) in Apoe–/– mice. Activation of integrin α5β1 induced tyrosine, but not serine, phosphorylation of YAP in ECs. Blockage of integrin α5β1 with ATN161 abolished the phosphorylation of YAP at Y357 induced by OSS. Mechanistic studies showed that c-Abl inhibitor attenuated the integrin α5β1–induced YAP tyrosine phosphorylation. Furthermore, the phosphorylation of c-Abl and YAPY357 was significantly increased in ECs in atherosclerotic vessels of mice and in human plaques versus normal vessels. Finally, bosutinib, a tyrosine kinase inhibitor, markedly reduced the level of YAPY357 and the development of atherosclerosis in Apoe–/– mice. The c-Abl/YAPY357 pathway serves as a mechanism for the activation of integrin α5β1 and the atherogenic phenotype of ECs in response to OSS, and provides a potential therapeutic strategy for atherogenesis.

Authors

Bochuan Li, Jinlong He, Huizhen Lv, Yajin Liu, Xue Lv, Chenghu Zhang, Yi Zhu, Ding Ai

×

Abstract

Sphingolipid imbalance is the culprit in a variety of neurological diseases, some affecting the myelin sheath. We have used whole-exome sequencing in patients with undetermined leukoencephalopathies to uncover the endoplasmic reticulum lipid desaturase DEGS1 as the causative gene in 19 patients from 13 unrelated families. Shared features among the cases include severe motor arrest, early nystagmus, dystonia, spasticity, and profound failure to thrive. MRI showed hypomyelination, thinning of the corpus callosum, and progressive thalamic and cerebellar atrophy, suggesting a critical role of DEGS1 in myelin development and maintenance. This enzyme converts dihydroceramide (DhCer) into ceramide (Cer) in the final step of the de novo biosynthesis pathway. We detected a marked increase of the substrate DhCer and DhCer/Cer ratios in patients’ fibroblasts and muscle. Further, we used a knockdown approach for disease modeling in Danio rerio, followed by a preclinical test with the first-line treatment for multiple sclerosis, fingolimod (FTY720, Gilenya). The enzymatic inhibition of Cer synthase by fingolimod, 1 step prior to DEGS1 in the pathway, reduced the critical DhCer/Cer imbalance and the severe locomotor disability, increasing the number of myelinating oligodendrocytes in a zebrafish model. These proof-of-concept results pave the way to clinical translation.

Authors

Devesh C. Pant, Imen Dorboz, Agatha Schluter, Stéphane Fourcade, Nathalie Launay, Javier Joya, Sergio Aguilera-Albesa, Maria Eugenia Yoldi, Carlos Casasnovas, Mary J. Willis, Montserrat Ruiz, Dorothée Ville, Gaetan Lesca, Karine Siquier-Pernet, Isabelle Desguerre, Huifang Yan, Jingmin Wang, Margit Burmeister, Lauren Brady, Mark Tarnopolsky, Carles Cornet, Davide Rubbini, Javier Terriente, Kiely N. James, Damir Musaev, Maha S. Zaki, Marc C. Patterson, Brendan C. Lanpher, Eric W. Klee, Filippo Pinto e Vairo, Elizabeth Wohler, Nara Lygia de M. Sobreira, Julie S. Cohen, Reza Maroofian, Hamid Galehdari, Neda Mazaheri, Gholamreza Shariati, Laurence Colleaux, Diana Rodriguez, Joseph G. Gleeson, Cristina Pujades, Ali Fatemi, Odile Boespflug-Tanguy, Aurora Pujol

×

Abstract

BACKGROUND. Awake neurosurgery requires patients to converse and respond to visual or verbal prompts to identify and protect brain tissue supporting essential functions such as language, primary sensory modalities, and motor function. These procedures can be poorly tolerated because of patient anxiety, yet acute anxiolytic medications typically cause sedation and impair cortical function. METHODS. In this study, direct electrical stimulation of the left dorsal anterior cingulum bundle was discovered to reliably evoke positive affect and anxiolysis without sedation in a patient with epilepsy undergoing research testing during standard inpatient intracranial electrode monitoring. These effects were quantified using subjective and objective behavioral measures, and stimulation was found to evoke robust changes in local and distant neural activity. RESULTS. The index patient ultimately required an awake craniotomy procedure to confirm safe resection margins in the treatment of her epilepsy. During the procedure, cingulum bundle stimulation enhanced positive affect and reduced the patient’s anxiety to the point that intravenous anesthetic/anxiolytic medications were discontinued and cognitive testing was completed. Behavioral responses were subsequently replicated in 2 patients with anatomically similar electrode placements localized to an approximately 1-cm span along the anterior dorsal cingulum bundle above genu of the corpus callosum. CONCLUSIONS. The current study demonstrates a robust anxiolytic response to cingulum bundle stimulation in 3 patients with epilepsy. TRIAL REGISTRATION. The current study was not affiliated with any formal clinical trial. FUNDING. This project was supported by the American Foundation for Suicide Prevention and the NIH.

Authors

Kelly R. Bijanki, Joseph R. Manns, Cory S. Inman, Ki Sueng Choi, Sahar Harati, Nigel P. Pedersen, Daniel L. Drane, Allison C. Waters, Rebecca E. Fasano, Helen S. Mayberg, Jon T. Willie

×

Abstract

BACKGROUND. Sphingolipids are important components of cellular membranes and functionally associated with fundamental processes such as cell differentiation, neuronal signaling, and myelin sheath formation. Defects in the synthesis or degradation of sphingolipids leads to various neurological pathologies; however, the entire spectrum of sphingolipid metabolism disorders remains elusive. METHODS. A combined approach of genomics and lipidomics was applied to identify and characterize a human sphingolipid metabolism disorder. RESULTS. By whole-exome sequencing in a patient with a multisystem neurological disorder of both the central and peripheral nervous systems, we identified a homozygous p.Ala280Val variant in DEGS1, which catalyzes the last step in the ceramide synthesis pathway. The blood sphingolipid profile in the patient showed a significant increase in dihydro sphingolipid species that was further recapitulated in patient-derived fibroblasts, in CRISPR/Cas9–derived DEGS1-knockout cells, and by pharmacological inhibition of DEGS1. The enzymatic activity in patient fibroblasts was reduced by 80% compared with wild-type cells, which was in line with a reduced expression of mutant DEGS1 protein. Moreover, an atypical and potentially neurotoxic sphingosine isomer was identified in patient plasma and in cells expressing mutant DEGS1. CONCLUSION. We report DEGS1 dysfunction as the cause of a sphingolipid disorder with hypomyelination and degeneration of both the central and peripheral nervous systems. TRIAL REGISTRATION. Not applicable. FUNDING. Seventh Framework Program of the European Commission, Swiss National Foundation, Rare Disease Initiative Zurich.

Authors

Gergely Karsai, Florian Kraft, Natja Haag, G. Christoph Korenke, Benjamin Hänisch, Alaa Othman, Saranya Suriyanarayanan, Regula Steiner, Cordula Knopp, Michael Mull, Markus Bergmann, J. Michael Schröder, Joachim Weis, Miriam Elbracht, Matthias Begemann, Thorsten Hornemann, Ingo Kurth

×

Abstract

The development and function of stem and progenitor cells that produce blood cells are vital in physiology. GATA-binding protein 2 (GATA2) mutations cause GATA-2 deficiency syndrome involving immunodeficiency, myelodysplastic syndrome, and acute myeloid leukemia. GATA-2 physiological activities necessitate that it be strictly regulated, and cell type–specific enhancers fulfill this role. The +9.5 intronic enhancer harbors multiple conserved cis-elements, and germline mutations of these cis-elements are pathogenic in humans. Since mechanisms underlying how GATA2 enhancer disease mutations impact hematopoiesis and pathology are unclear, we generated mouse models of the enhancer mutations. While a multi-motif mutant was embryonically lethal, a single-nucleotide Ets motif mutant was viable, and steady-state hematopoiesis was normal. However, the Ets motif mutation abrogated stem/progenitor cell regeneration following stress. These results reveal a new mechanism in human genetics, in which a disease predisposition mutation inactivates enhancer regenerative activity, while sparing developmental activity. Mutational sensitization to stress that instigates hematopoietic failure constitutes a paradigm for GATA-2 deficiency syndrome and other contexts of GATA-2–dependent pathogenesis.

Authors

Alexandra A. Soukup, Ye Zheng, Charu Mehta, Jun Wu, Peng Liu, Miao Cao, Inga Hofmann, Yun Zhou, Jing Zhang, Kirby D. Johnson, Kyunghee Choi, Sunduz Keles, Emery H. Bresnick

×

Abstract

Genetic variants at the PTPN2 locus, which encodes the tyrosine phosphatase PTPN2, cause reduced gene expression and are linked to rheumatoid arthritis (RA) and other autoimmune diseases. PTPN2 inhibits signaling through the T cell and cytokine receptors, and loss of PTPN2 promotes T cell expansion and CD4- and CD8-driven autoimmunity. However, it remains unknown whether loss of PTPN2 in FoxP3+ regulatory T cells (Tregs) plays a role in autoimmunity. Here we aimed to model human autoimmune-predisposing PTPN2 variants, the presence of which results in a partial loss of PTPN2 expression, in mouse models of RA. We identified that reduced expression of Ptpn2 enhanced the severity of autoimmune arthritis in the T cell–dependent SKG mouse model and demonstrated that this phenotype was mediated through a Treg-intrinsic mechanism. Mechanistically, we found that through dephosphorylation of STAT3, PTPN2 inhibits IL-6–driven pathogenic loss of FoxP3 after Tregs have acquired RORγt expression, at a stage when chromatin accessibility for STAT3-targeted IL-17–associated transcription factors is maximized. We conclude that PTPN2 promotes FoxP3 stability in mouse RORγt+ Tregs and that loss of function of PTPN2 in Tregs contributes to the association between PTPN2 and autoimmunity.

Authors

Mattias N.D. Svensson, Karen M. Doody, Benjamin J. Schmiedel, Sourya Bhattacharyya, Bharat Panwar, Florian Wiede, Shen Yang, Eugenio Santelli, Dennis J. Wu, Cristiano Sacchetti, Ravindra Gujar, Gregory Seumois, William B. Kiosses, Isabelle Aubry, Gisen Kim, Piotr Mydel, Shimon Sakaguchi, Mitchell Kronenberg, Tony Tiganis, Michel L. Tremblay, Ferhat Ay, Pandurangan Vijayanand, Nunzio Bottini

×

Abstract

Immune checkpoint inhibitors and adoptive transfer of gene-engineered T cells have emerged as novel therapeutic modalities for hard-to-treat solid tumors; however, many patients are refractory to these immunotherapies, and the mechanisms underlying tumor immune resistance have not been fully elucidated. By comparing the tumor microenvironment of checkpoint inhibition–sensitive and –resistant murine solid tumors, we observed that the resistant tumors had low immunogenicity. We identified antigen presentation by CD11b+F4/80+ tumor–associated macrophages (TAMs) as a key factor correlated with immune resistance. In the resistant tumors, TAMs remained inactive and did not exert antigen-presenting activity. Targeted delivery of a long peptide antigen to TAMs by using a nano-sized hydrogel (nanogel) in the presence of a TLR agonist activated TAMs, induced their antigen-presenting activity, and thereby transformed the resistant tumors into tumors sensitive to adaptive immune responses such as adoptive transfer of tumor-specific T cell receptor–engineered T cells. These results indicate that the status and function of TAMs have a significant impact on tumor immune sensitivity and that manipulation of TAM functions would be an effective approach for improving the efficacy of immunotherapies.

Authors

Daisuke Muraoka, Naohiro Seo, Tae Hayashi, Yoshiro Tahara, Keisuke Fujii, Isao Tawara, Yoshihiro Miyahara, Kana Okamori, Hideo Yagita, Seiya Imoto, Rui Yamaguchi, Mitsuhiro Komura, Satoru Miyano, Masahiro Goto, Shin-ichi Sawada, Akira Asai, Hiroaki Ikeda, Kazunari Akiyoshi, Naozumi Harada, Hiroshi Shiku

×

Abstract

The cyclic GMP-AMP synthase/stimulator of IFN genes (cGAS/STING) pathway detects cytosolic DNA to activate innate immune responses. Poly(ADP-ribose) polymerase inhibitors (PARPi) selectively target cancer cells with DNA repair deficiencies such as those caused by BRCA1 mutations or ERCC1 defects. Using isogenic cell lines and patient-derived samples, we showed that ERCC1-defective non–small cell lung cancer (NSCLC) cells exhibit an enhanced type I IFN transcriptomic signature and that low ERCC1 expression correlates with increased lymphocytic infiltration. We demonstrated that clinical PARPi, including olaparib and rucaparib, have cell-autonomous immunomodulatory properties in ERCC1-defective NSCLC and BRCA1-defective triple-negative breast cancer (TNBC) cells. Mechanistically, PARPi generated cytoplasmic chromatin fragments with characteristics of micronuclei; these were found to activate cGAS/STING, downstream type I IFN signaling, and CCL5 secretion. Importantly, these effects were suppressed in PARP1-null TNBC cells, suggesting that this phenotype resulted from an on-target effect of PARPi on PARP1. PARPi also potentiated IFN-γ–induced PD-L1 expression in NSCLC cell lines and in fresh patient tumor cells; this effect was enhanced in ERCC1-deficient contexts. Our data provide a preclinical rationale for using PARPi as immunomodulatory agents in appropriately molecularly selected populations.

Authors

Roman M. Chabanon, Gareth Muirhead, Dragomir B. Krastev, Julien Adam, Daphné Morel, Marlène Garrido, Andrew Lamb, Clémence Hénon, Nicolas Dorvault, Mathieu Rouanne, Rebecca Marlow, Ilirjana Bajrami, Marta Llorca Cardeñosa, Asha Konde, Benjamin Besse, Alan Ashworth, Stephen J. Pettitt, Syed Haider, Aurélien Marabelle, Andrew N.J. Tutt, Jean-Charles Soria, Christopher J. Lord, Sophie Postel-Vinay

×

Abstract

A variety of neurological procedures, including deep brain stimulation and craniotomies that require tissue removal near elegant cortices, require patients to remain awake and responsive in order to monitor function. Such procedures can produce anxiety and are poorly tolerated in some subjects. In this issue of the JCI, Bijanki and colleagues demonstrate that electrical stimulation of the left dorsal anterior cingulum bundle promoted a positive (mirthful) effect and reduced anxiety, without sedation, in three patients with epilepsy undergoing intracranial electrode monitoring. The results of this study highlight the need for further evaluation of anterior cingulum stimulation to reduce anxiety during awake surgery and as a possible approach for treating anxiety disorders.

Authors

Kelly A. Mills

×

Abstract

Carrying the ε4 allele of the APOE gene encoding apolipoprotein E (APOE4) markedly increases the risk for late-onset Alzheimer’s disease (AD), in which APOE4 exacerbates the brain accumulation and subsequent deposition of amyloid-β (Aβ) peptides. While the LDL receptor–related protein 1 (LRP1) is a major apoE receptor in the brain, we found that its levels are associated with those of insoluble Aβ depending on APOE genotype status in postmortem AD brains. Thus, to determine the functional interaction of apoE4 and LRP1 in brain Aβ metabolism, we crossed neuronal LRP1-knockout mice with amyloid model APP/PS1 mice and APOE3–targeted replacement (APO3-TR) or APOE4-TR mice. Consistent with previous findings, mice expressing apoE4 had increased Aβ deposition and insoluble amounts of Aβ40 and Aβ42 in the hippocampus of APP/PS1 mice compared with those expressing apoE3. Intriguingly, such effects were reversed in the absence of neuronal LRP1. Neuronal LRP1 deficiency also increased detergent-soluble apoE4 levels, which may contribute to the inhibition of Aβ deposition. Together, our results suggest that apoE4 exacerbates Aβ pathology through a mechanism that depends on neuronal LRP1. A better understanding of apoE isoform–specific interaction with their metabolic receptor LRP1 on Aβ metabolism is crucial for defining APOE4-related risk for AD.

Authors

Masaya Tachibana, Marie-Louise Holm, Chia-Chen Liu, Mitsuru Shinohara, Tomonori Aikawa, Hiroshi Oue, Yu Yamazaki, Yuka A. Martens, Melissa E. Murray, Patrick M. Sullivan, Kathrin Weyer, Simon Glerup, Dennis W. Dickson, Guojun Bu, Takahisa Kanekiyo

×

Abstract

Environmental exposures interplay with human host factors to promote the development and progression of allergic diseases. The worldwide prevalence of allergic disease is rising as a result of complex gene-environment interactions that shape the immune system and host response. Research shows an association between the rise of allergic diseases and increasingly modern Westernized lifestyles, which are characterized by increased urbanization, time spent indoors, and antibiotic usage. These environmental changes result in increased exposure to air and traffic pollution, fungi, infectious agents, tobacco smoke, and other early-life and lifelong risk factors for the development and exacerbation of asthma and allergic diseases. It is increasingly recognized that the timing, load, and route of allergen exposure affect allergic disease phenotypes and development. Still, our ability to prevent allergic diseases is hindered by gaps in understanding of the underlying mechanisms and interaction of environmental, viral, and allergen exposures with immune pathways that impact disease development. This Review highlights epidemiologic and mechanistic evidence linking environmental exposures to the development and exacerbation of allergic airway responses.

Authors

Liza Bronner Murrison, Eric B. Brandt, Jocelyn Biagini Myers, Gurjit K. Khurana Hershey

×

Abstract

Tregs play a fundamental role in immune tolerance via control of self-reactive effector T cells (Teffs). This function is dependent on maintenance of a high intracellular cAMP concentration. A number of microRNAs are implicated in the maintenance of Tregs. In this study, we demonstrate that peripheral immune tolerance is critically dependent on posttranscriptional repression of the cAMP-hydrolyzing enzyme phosphodiesterase-3b (Pde3b) by microRNA-142-5p (miR-142-5p). In this manner, miR-142-5p acts as an immunometabolic regulator of intracellular cAMP, controlling Treg suppressive function. Mir142 was associated with a super enhancer bound by the Treg lineage–determining transcription factor forkhead box P3 (FOXP3), and Treg-specific deletion of miR-142 in mice (TregΔ142) resulted in spontaneous, lethal, multisystem autoimmunity, despite preserved numbers of phenotypically normal Tregs. Pharmacological inhibition and genetic ablation of PDE3B prevented autoimmune disease and reversed the impaired suppressive function of Tregs in TregΔ142 animals. These findings reveal a critical molecular switch, specifying Treg function through the modulation of a highly conserved, cell-intrinsic metabolic pathway. Modulation of this pathway has direct relevance to the pathogenesis and treatment of autoimmunity and cancer.

Authors

Nelomi Anandagoda, Joanna C.D. Willis, Arnulf Hertweck, Luke B. Roberts, Ian Jackson, M. Refik Gökmen, Richard G. Jenner, Jane K. Howard, Graham M. Lord

×

Abstract

Epithelial-mesenchymal transition (EMT) contributes significantly to interstitial matrix deposition in diabetic kidney disease (DKD). However, detection of EMT in kidney tissue is impracticable, and anti-EMT therapies have long been hindered. We reported that phosphatase and tensin homolog (PTEN) promoted transforming growth factor beta 1 (TGF-β), sonic hedgehog (SHH), connective tissue growth factor (CTGF), interleukin 6 (IL-6), and hyperglycemia-induced EMT when PTEN was modified by a MEX3C-catalyzed K27-linked polyubiquitination at lysine 80 (referred to as PTENK27-polyUb). Genetic inhibition of PTENK27-polyUb alleviated Col4a3 knockout–, folic acid–, and streptozotocin-induced (STZ-induced) kidney injury. Serum and urine PTENK27-polyUb concentrations were negatively correlated with glomerular filtration rate (GFR) for diabetic patients. Mechanistically, PTENK27-polyUb facilitated dephosphorylation and protein stabilization of TWIST, SNAI1, and YAP in renal epithelial cells, leading to enhanced EMT. We identified that a small molecule, triptolide, inhibited MEX3C-catalyzed PTENK27-polyUb and EMT of renal epithelial cells. Treatment with triptolide reduced TWIST, SNAI1, and YAP concurrently and improved kidney health in Col4a3 knockout–, folic acid–injured disease models and STZ-induced, BTBR ob/ob diabetic nephropathy models. Hence, we demonstrated the important role of PTENK27-polyUb in DKD and a promising therapeutic strategy that inhibited the progression of DKD.

Authors

Yajuan Li, Qingsong Hu, Chunlai Li, Ke Liang, Yu Xiang, Heidi Hsiao, Tina K. Nguyen, Peter K. Park, Sergey D. Egranov, Chandrashekar R. Ambati, Nagireddy Putluri, David H. Hawke, Leng Han, Mien-Chie Hung, Farhad R. Danesh, Liuqing Yang, Chunru Lin

×

Abstract

Alzheimer’s disease (AD) is the leading cause of dementia, and its pathogenesis is initiated by the accumulation of amyloid-β (Aβ) into extracellular plaques. Apolipoprotein E4 (ApoE4) is the largest genetic risk factor for sporadic AD and contributes to AD pathogenesis by influencing clearance and seeding of the initial aggregation of Aβ. In this issue of the JCI, Tachibana et al. investigated the relationship between neuronal LRP1 expression and ApoE4-mediated seeding of Aβ and showed that knockout of neuronal LRP1 prevents the increase in Aβ pathology caused by ApoE4 expression. These findings give insight into potential therapeutic targets for the preclinical phase of AD and the pathogenesis of Aβ pathology.

Authors

Michael R. Strickland, David M. Holtzman

×

Abstract

Mast cells (MCs) are immune sentinels, but whether they also function as antigen-presenting cells (APCs) remains elusive. Using mouse models of MC deficiency, we report on MC-dependent recruitment and activation of multiple T cell subsets to the skin and draining lymph nodes (DLNs) during dengue virus (DENV) infection. Newly recruited and locally proliferating γδ T cells were the first T cell subset to respond to MC-driven inflammation, and their production of IFN-γ was MC dependent. MC–γδ T cell conjugates were observed consistently in infected peripheral tissues, suggesting a new role for MCs as nonconventional APCs for γδ T cells. MC-dependent γδ T cell activation and proliferation during DENV infection required T cell receptor (TCR) signaling and the nonconventional antigen presentation molecule endothelial cell protein C receptor (EPCR) on MCs. γδ T cells, not previously implicated in DENV host defense, killed infected targeted DCs and contributed to the clearance of DENV in vivo. We believe immune synapse formation between MCs and γδ T cells is a novel mechanism to induce specific and protective immunity at sites of viral infection.

Authors

Chinmay Kumar Mantri, Ashley L. St. John

×

Abstract

Noncoding RNAs are emerging as important players in gene regulation and disease pathogeneses. Here, we show that a previously uncharacterized long noncoding RNA, nexilin F-actin binding protein antisense RNA 1 (NEXN-AS1), modulates the expression of the actin-binding protein NEXN and that NEXN exerts a protective role against atherosclerosis. An expression microarray analysis showed that the expression of both NEXN-AS1 and NEXN was reduced in human atherosclerotic plaques. In vitro experiments revealed that NEXN-AS1 interacted with the chromatin remodeler BAZ1A and the 5′ flanking region of the NEXN gene and that it also upregulated NEXN expression. Augmentation of NEXN-AS1 expression inhibited TLR4 oligomerization and NF-κB activity, downregulated the expression of adhesion molecules and inflammatory cytokines by endothelial cells, and suppressed monocyte adhesion to endothelial cells. These inhibitory effects of NEXN-AS1 were abolished by knockdown of NEXN. In vivo experiments using ApoE-knockout mice fed a Western high-fat diet demonstrated that NEXN deficiency promoted atherosclerosis and increased macrophage abundance in atherosclerotic lesions, with heightened expression of adhesion molecules and inflammatory cytokines, whereas augmented NEXN expression deterred atherosclerosis. Patients with coronary artery disease were found to have lower blood NEXN levels than healthy individuals. These results indicate that NEXN-AS1 and NEXN represent potential therapeutic targets in atherosclerosis-related diseases.

Authors

Yan-Wei Hu, Feng-Xia Guo, Yuan-Jun Xu, Pan Li, Zhi-Feng Lu, David G. McVey, Lei Zheng, Qian Wang, John H. Ye, Chun-Min Kang, Shao-Guo Wu, Jing-Jing Zhao, Xin Ma, Zhen Yang, Fu-Chun Fang, Yu-Rong Qiu, Bang-Ming Xu, Lei Xiao, Qian Wu, Li-Mei Wu, Li Ding, Tom R. Webb, Nilesh J. Samani, Shu Ye

×

Abstract

Joint pain is the defining symptom of osteoarthritis (OA) but its origin and mechanisms remain unclear. Here, we investigated an unprecedented role of osteoclast-initiated subchondral bone remodeling in sensory innervation for OA pain. We show that osteoclasts secrete netrin-1 to induce sensory nerve axonal growth in subchondral bone. Reduction of osteoclast formation by knockout of receptor activator of nuclear factor kappa-B ligand (Rankl) in osteocytes inhibited the growth of sensory nerves into subchondral bone, dorsal root ganglion neuron hyperexcitability, and behavioral measures of pain hypersensitivity in OA mice. Moreover, we demonstrated a possible role for netrin-1 secreted by osteoclasts during aberrant subchondral bone remodeling in inducing sensory innervation and OA pain through its receptor DCC (deleted in colorectal cancer). Importantly, knockout of Netrin1 in tartrate-resistant acid phosphatase–positive (TRAP-positive) osteoclasts or knockdown of Dcc reduces OA pain behavior. In particular, inhibition of osteoclast activity by alendronate modifies aberrant subchondral bone remodeling and reduces innervation and pain behavior at the early stage of OA. These results suggest that intervention of the axonal guidance molecules (e.g., netrin-1) derived from aberrant subchondral bone remodeling may have therapeutic potential for OA pain.

Authors

Shouan Zhu, Jianxi Zhu, Gehua Zhen, Yihe Hu, Senbo An, Yusheng Li, Qin Zheng, Zhiyong Chen, Ya Yang, Mei Wan, Richard Leroy Skolasky, Yong Cao, Tianding Wu, Bo Gao, Mi Yang, Manman Gao, Julia Kuliwaba, Shuangfei Ni, Lei Wang, Chuanlong Wu, David Findlay, Holger K. Eltzschig, Hong Wei Ouyang, Janet Crane, Feng-Quan Zhou, Yun Guan, Xinzhong Dong, Xu Cao

×

Abstract

ARHGEF1 is a RhoA-specific guanine nucleotide exchange factor expressed in hematopoietic cells. We used whole-exome sequencing to identify compound heterozygous mutations in ARHGEF1, resulting in the loss of ARHGEF1 protein expression in 2 primary antibody–deficient siblings presenting with recurrent severe respiratory tract infections and bronchiectasis. Both ARHGEF1-deficient patients showed an abnormal B cell immunophenotype, with a deficiency in marginal zone and memory B cells and an increased frequency of transitional B cells. Furthermore, the patients’ blood contained immature myeloid cells. Analysis of a mediastinal lymph node from one patient highlighted the small size of the germinal centers and an abnormally high plasma cell content. On the molecular level, T and B lymphocytes from both patients displayed low RhoA activity and low steady-state actin polymerization (even after stimulation of lysophospholipid receptors). As a consequence of disturbed regulation of the RhoA downstream target Rho-associated kinase I/II (ROCK), the patients’ lymphocytes failed to efficiently restrain AKT phosphorylation. Enforced ARHGEF1 expression or drug-induced activation of RhoA in the patients’ cells corrected the impaired actin polymerization and AKT regulation. Our results indicate that ARHGEF1 activity in human lymphocytes is involved in controlling actin cytoskeleton dynamics, restraining PI3K/AKT signaling, and confining B lymphocytes and myelocytes within their dedicated functional environment.

Authors

Amine Bouafia, Sébastien Lofek, Julie Bruneau, Loïc Chentout, Hicham Lamrini, Amélie Trinquand, Marie-Céline Deau, Lucie Heurtier, Véronique Meignin, Capucine Picard, Elizabeth Macintyre, Olivier Alibeu, Marc Bras, Thierry Jo Molina, Marina Cavazzana, Isabelle André-Schmutz, Anne Durandy, Alain Fischer, Eric Oksenhendler, Sven Kracker

×

Abstract

The rapid expansion in the number of encephalitis disorders associated with autoantibodies against neuronal proteins has led to an incremental increase in use of the term “autoimmune epilepsy,” yet has occurred with limited attention to the physiopathology of each disease and genuine propensity to develop epilepsy. Indeed, most autoimmune encephalitides present with seizures, but the probability of evolving to epilepsy is relatively small. The risk of epilepsy is higher for disorders in which the antigens are intracellular (often T cell–mediated) compared with disorders in which the antigens are on the cell surface (antibody-mediated). Most autoantibodies against neuronal surface antigens show robust effects on the target proteins, resulting in hyperexcitability and impairment of synaptic function and plasticity. Here, we trace the evolution of the concept of autoimmune epilepsy and examine common inflammatory pathways that might lead to epilepsy. Then, we focus on several antibody-mediated encephalitis disorders that associate with seizures and review the synaptic alterations caused by patients’ antibodies, with emphasis on those that have been modeled in animals (e.g., antibodies against NMDA, AMPA receptors, LGI1 protein) or in cultured neurons (e.g., antibodies against the GABAb receptor).

Authors

Christian Geis, Jesus Planagumà, Mar Carreño, Francesc Graus, Josep Dalmau

×

Abstract

Authors

Parisa Malekzadeh, Anna Pasetto, Paul F. Robbins, Maria R. Parkhurst, Biman C. Paria, Li Jia, Jared J. Gartner, Victoria Hill, Zhiya Yu, Nicholas P. Restifo, Abraham Sachs, Eric Tran, Winifred Lo, Robert P.T. Somerville, Steven A. Rosenberg, Drew C. Deniger

×

In-Press Preview - More

Abstract

Gastrointestinal stromal tumor (GIST) is the most common human sarcoma, frequently characterized by an oncogenic mutation in the KIT or platelet-derived growth factor receptor alpha (PDGFRA) genes. We performed RNA sequencing of 75 human GIST tumors from 75 patients, comprising the largest cohort of GISTs sequenced to date, in order to discover differences in the immune infiltrates of KIT and PDGFRA-mutant GIST. Through bioinformatics, immunohistochemistry, and flow cytometry, we found that PDGFRA-mutant GISTs harbored more immune cells with increased cytolytic activity when compared to KIT-mutant GISTs. PDGFRA-mutant GISTs expressed many chemokines, such as CXCL14, at a significantly higher level when compared to KIT-mutant GISTs and exhibited more diverse driver-derived neoepitope:HLA binding, both of which may contribute to PDGFRA-mutant GIST immunogenicity. Through machine learning, we generated gene expression-based immune profiles capable of differentiating KIT and PDGFRA-mutant GISTs, and also identified additional immune features of high PD-1 and PD-L1 expressing tumors across all GIST mutational subtypes, which may provide insight into immunotherapeutic opportunities and limitations in GIST.

Authors

Gerardo A. Vitiello, Timothy G. Bowler, Mengyuan Liu, Benjamin D. Medina, Jennifer Q. Zhang, Nesteene J. Param, Jennifer K. Loo, Rachel L. Goldfeder, Frederic Chibon, Ferdinand Rossi, Shan Zeng, Ronald P. DeMatteo

×

Abstract

Soluble urokinase receptor (suPAR) is a circulatory molecule that activates αvβ3 integrin on podocytes, causes foot process effacement, and contributes to proteinuric kidney disease. While active integrin can be targeted by antibodies and small molecules, endogenous inhibitors haven’t been discovered yet. Here we report a novel, renoprotective role for inducible costimulator (ICOS) ligand (ICOSL) in early kidney disease through its selective binding to podocyte αvβ3 integrin. Contrary to ICOSL’s immune-regulatory role, ICOSL in non-hematopoietic cells limited the activation of αvβ3 integrin. Specifically, ICOSL contains arginine-glycine-aspartate (RGD) motif, which allowed for a high affinity and selective binding to αvβ3 and modulation of podocyte adhesion. This binding was largely inhibited either by a synthetic RGD peptide or by a disrupted RGD sequence in ICOSL. ICOSL binding favored the active αvβ3 rather than the inactive form and showed little affinity for other integrins. Consistent with the rapid induction of podocyte ICOSL by inflammatory stimuli, glomerular ICOSL expression was increased in biopsies of early stage human proteinuric kidney diseases. Icosl deficiency in mice resulted in an increased susceptibility to proteinuria that was rescued by recombinant ICOSL. Our work identified a novel role for ICOSL, which serves as an endogenous αvβ3-selective antagonist to maintain glomerular filtration.

Authors

Kwi Hye Koh, Yanxia Cao, Steve Mangos, Nicholas J. Tardi, Ranadheer R. Dande, Ha Won Lee, Beata Samelko, Mehmet M. Altintas, Vincent P. Schmitz, Hyun Lee, Kamalika Mukherjee, Vasil Peev, David J. Cimbaluk, Jochen Reiser, Eunsil Hahm

×

Abstract

Pancreatic ductal adenocarcinoma (PDAC) represents an immune quiescent tumor that is resistant to immune checkpoint inhibitors. Previously, our group has shown that a GM-CSF secreting allogenic pancreatic tumor cell vaccine (GVAX), may prime the tumor microenvironment by inducing intratumoral T-cell infiltration. Here, we show that untreated PDACs express minimal indoleamine-2, 3-dioxygenase (IDO1); however, GVAX therapy induced IDO1 expression on tumor epithelia as well as vaccine-induced tertiary lymphoid aggregates. IDO1 expression plays a role in regulating the polarization of Th1, Th17, and possibly T-regulatory cells in PDAC tumors. IDO1 inhibitor enhanced anti-tumor efficacy of GVAX in a murine model of PDACs. The combination of vaccine and IDO1 inhibitor enhanced intratumoral T-cell infiltration and function, but adding anti-PD-L1 antibody to the combination did not offer further synergy and in fact may have a negative interaction decreasing the number of intratumoral effector T-cells. Additionally, IDO1 inhibitor in the presence of vaccine therapy, did not significantly modulate intratumoral myeloid derived suppressor cells quantitatively, but diminished their suppressive effect on CD8+ proliferation. Our study thus supports the combination of IDO1 inhibitor and vaccine therapy, however, does not support the combination of IDO1 inhibitor and anti-PD-1/PD-L1 antibody for T cell-inflamed tumors such as PDACs treated with vaccine therapy.

Authors

Alex B. Blair, Jennifer Kleponis, Dwayne L. Thomas II, Stephen T. Muth, Adrian G. Murphy, Victoria Kim, Lei Zheng

×

Abstract

Understanding the tumor immune microenvironment (TIME) promises to be key for optimal cancer therapy, especially in triple-negative breast cancer (TNBC). Integrating spatial resolution of immune cells with laser capture microdissection gene expression profiles, we defined distinct TIME stratification in TNBC with implications for current therapies, including immune checkpoint blockade. TNBCs with an immunoreactive microenvironment exhibited tumoral infiltration of granzyme B+ CD8+ T cells, a type I interferon signature, elevated expression of multiple immune inhibitory molecules, including IDO, PD-L1, and good outcome. An “immune-cold” microenvironment with absence of tumoral CD8+ T cells was defined by elevated expression of the immunosuppressive marker B7-H4, signatures of fibrotic stroma and poor outcome. A distinct poor outcome immunomodulatory microenvironment, hitherto poorly characterized, exhibited stromal restriction of CD8+ T cells, stromal expression of PD-L1 and enrichment for signatures of cholesterol biosynthesis. Metasignatures defining these TIME subtypes stratified TNBC, predicting outcome and identifying potential therapeutic targets for TNBC.

Authors

Tina Gruosso, Mathieu Gigoux, Venkata Satya Kumar Manem, Nicholas Bertos, Dongmei Zuo, Irina Perlitch, Sadiq Mehdi Ismail Saleh, Hong Zhao, Margarita Souleimanova, Radia Marie Johnson, Anne Monette, Valentina Munoz Ramos, Michael Trevor Hallett, John Stagg, Réjean Lapointe, Atilla Omeroglu, Sarkis Meterissian, Laurence Buisseret, Gert Van den Eynden, Roberto Salgado, Marie-Christine Guiot, Benjamin Haibe-Kains, Morag Park

×

Abstract

Constitutive JAK2 signaling is central to myeloproliferative neoplasm (MPN) pathogenesis and results in activation of STAT, PI3K/AKT and MEK/ERK signaling. However, the therapeutic efficacy of current JAK2 inhibitors is limited. We investigated the role of MEK/ERK signaling in MPN cell survival in the setting of JAK kinase inhibition. Type I and II JAK2 inhibition suppressed MEK/ERK activation in MPN cell lines in vitro, but not in Jak2V617F and MPLW515L mouse models in vivo. JAK2 inhibition ex vivo inhibited MEK/ERK signaling suggesting cell extrinsic factors maintain ERK activation in vivo. We identified PDGFRα as an activated kinase that remains activated upon JAK2 inhibition in vivo, and PDGF-AA/PDGF-BB production persisted in the setting of JAK kinase inhibition. PDGF-BB maintained ERK activation in presence of ruxolitinib consistent with its function as a ligand-induced bypass for ERK activation. Combined JAK/MEK inhibition suppressed MEK/ERK activation in Jak2V617F and MPLW515L mice with increased efficacy and reversal of fibrosis to an extent not seen with JAK inhibitors. This demonstrates that compensatory ERK activation limits the efficacy of JAK2 inhibition and dual JAK/MEK inhibition provides an opportunity for improved therapeutic efficacy in MPNs and in other malignancies driven by aberrant JAK-STAT signaling.

Authors

Simona Stivala, Tamara Codilupi, Sime Brkic, Anne Baerenwaldt, Nilabh Ghosh, Hui Hao-Shen, Stephan Dirnhofer, Matthias S. Dettmer, Cedric Simillion, Beat A. Kaufmann, Sophia Chiu, Matthew D. Keller, Maria Kleppe, Morgane Hilpert, Andreas S. Buser, Jakob R. Passweg, Thomas Radimerski, Radek C. Skoda, Ross L. Levine, Sara C. Meyer

×

Advertisement

February 2019

129 2 cover

February 2019 Issue

On the cover:
Real-time visualization of immune checkpoint inhibitor engagement

In this issue of the JCI, Kumar et al. describe a peptide-based PET ligand that enables dynamic analysis of anti–PD-L1 therapeutic engagement with targets on tumor cells. The non­invasive tool has the potential to optimize the efficacy of immune checkpoint inhibitors and provide insights into safer dosing and therapeutic regimens. Image credit: Jennifer E. Fairman, CMI, FAMI.

×
Jci tm 02

February 2019 JCI This Month

JCI This Month is a digest of the research, reviews, and other features published each month.

×

Review Series - More

Biology of familial cancer predisposition syndromes

Series edited by Mary Armanios and Agata Smogorzewska

Heritable germline mutations are estimated to drive 10% of all cancers, which can manifest as pediatric as well adult diseases. This series, curated by Agata Smogorzewska and JCI Associate Editor Mary Armanios, unravels how the biology and genetics underlying familial cancer predisposition syndromes informs understanding cancer etiology and biology. Reviews focus on cancer-driving mutations in transcription factors, in developmental and metabolic signals, and in pathways that control genetic stability and provide insights linking mechanistic studies with ongoing clinical research. Enhanced understanding of the biological basis for these familial cancers may inform the treatment of cancers driven by both germline and somatic mutations.

×