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Introduction
The number of microbial cells that reside on and in us rivals the 
number of our own cells (1). In health, we, the host, and microbes 
live in symbiosis. However, many illnesses are defined by or 
associated with microbial dysbiosis. These include both com-
municable diseases such as tuberculosis (2) and syphilis (3), and 
non-communicable diseases like inflammatory bowel disease (4), 
diabetes (5), obesity (6), and cancer (7). We have known since the 
time of Koch and the discovery of Mycobacterium tuberculosis that 
our microbial inhabitants affect our health status. However, how 
we characterize these organisms has drastically changed (8–10). 
Koch’s postulates laid a framework for assessing microbial causes 
of disease through culturing methods. Indeed, Koch’s postulates 
are still relevant, more than 130 years after they were first pub-
lished; however, we now also recognize the importance and vast 
diversity of unculturable microbes (11). Advances in technology 
like next-generation sequencing (NGS) have led to an explosion 
in the discovery and characterization of microbes, because NGS 
methods do not rely on traditional culture techniques and can 
thus detect the unculturable microbes (Table 1). In fact, comple-
menting of traditional culture methods with NGS has already 
been implemented in many clinical microbiology laboratories 
because of its potential to address severe, insidious infections 
(12). Advantages of NGS include its ability to identify more 
unique species than traditional culture methods, and the capacity 
to perform parallel sequencing of multiple samples, which, with 

the earlier, low-throughput Sanger sequencing technology, was 
not technically feasible.

The purpose of this Review is to discuss crucial features relat-
ing to NGS in translational research and clinical care. We first 
discuss the fundamentals of NGS and compare common method-
ologies as well as sources of data variability and important study 
design considerations. Then, we present select examples of how 
NGS has altered our collective understanding of disease patho-
genesis. Finally, we offer insights as to how NGS might further be 
integrated into and advance clinical care in the coming years with 
the aim of helping researchers and clinicians consider the impact 
of NGS on disease diagnostics and therapeutics.

Fundamental considerations in the use of NGS
What are the fundamentals of NGS? An initial question in studying 
the gut microbiota is which microbes are present in a given sam-
ple. Subsequent inquiries, addressable by NGS analyses, include 
determining the relative abundance and predictive functional 
profiles of the microbes present, as well as understanding intra-
species and population heterogeneity (13). NGS methods address 
these questions by directly sequencing microbial DNA or RNA, for 
example, in fecal, blood, and/or tissue samples. With the improv-
ing affordability of NGS, the two primary NGS methodologies 
now in use are amplicon sequencing and shotgun metagenomic 
sequencing; however, RNA sequencing is also a valid and, in some 
ways, superior method for microbial characterization, as it allows 
for determination of the transcriptome, representing a further 
step to define microbiota function (14, 15).

One of the most common NGS methods for bacterial identi-
fication and characterization is amplicon sequencing. Amplicon 
sequencing involves first amplifying a region of the DNA via PCR, 
and then sequencing the resultant product. The target for PCR 
amplification is, most commonly, the bacterial 16S ribosomal RNA 
(rRNA) gene (Figure 1). For this reason, amplicon sequencing is 
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computational alignment to reference 16S rRNA sequence data-
bases such as the Ribosomal Database Project (RDP) (22), SILVA 
(23), or Greengenes (24). OTUs and identified taxa are then used 
for downstream analysis. An alternative, less frequently used non-
distance-based analytical approach for amplicon sequencing relies 
on exact nucleotide matching to yield amplicon sequence variants 
(ASVs). ASV taxon assignments are dependent on the quality of 
reference databases (25). Additionally, ASVs have the potential to 
split single genomes into multiple clusters, because most bacterial 
cells possess more than one rRNA gene copy and these, not infre-
quently, differ in nucleotide sequence (26). While each method 
(OTUs versus ASVs) has proponents (26, 27), importantly, both are 
computational approaches to estimate taxonomy. For unculturable 
microbes, NGS data alone produce “candidate species,” whereas 
firmer classification of cultured bacterial species is possible using 
both phenotypic and genome sequence data (28).

In contrast to amplicon sequencing, shotgun metagenomic 
sequencing and RNA sequencing analyze all the DNA or RNA in 
a given sample, respectively. For shotgun metagenomic sequenc-
ing, after extraction, the DNA is randomly fragmented, and bar-
codes and adapters are ligated to the ends of each segment to 
facilitate sample identification and DNA sequencing. The resul-
tant reads are cleaned and subsequently aligned to a reference 
database to identify taxa and functional potential. The primary 
reference databases are usually Reference Sequence (RefSeq; ref. 
29) and GenBank (30). These are large databases containing all 
publicly available genomes. Smaller pathogen-focused databases 
such as Pathosystems Resource Integration Center (PATRIC; ref. 
31) and the Eukaryotic Pathogen Database (EuPathDB; ref. 32) 
are also used. The RNA sequencing workflow is similar to that 
for shotgun metagenomic sequencing; however, after fragmenta-
tion, the RNA segments are reverse transcribed, using PCR, into 
complementary DNA (cDNA), which is then processed using the 
DNA sequencing pipeline. Figure 2 provides an overview of NGS 
processes. Because of their diverse methodologies, 16S rRNA 
amplicon, shotgun metagenomic, and RNA sequencing each have 
advantages and drawbacks. These are discussed below. Choosing 

also referred to as 16S rRNA sequencing or analysis. The use of 
the 16S rRNA gene to characterize uncultured microbes was first 
described by Lane et al. in 1985 (16). The 16S rRNA gene is an ideal 
target because it is highly conserved and ubiquitous among bacte-
ria (without it, bacteria would be unable to translate mRNA into 
proteins and thus be nonfunctional) and it also contains nine hyper-
variable regions (V1–V9) that differ between bacterial species and 
genera (Figure 1). Thus, PCR primers can be designed such that for-
ward and reverse primers bind to conserved regions but amplify an 
intervening variable region. Typically only a subset of the variable 
regions are targeted for sequencing in a given study (e.g., V1–V3, 
V4–V5) to limit the amount and, thus, time and cost of sequencing. 
However, it is important to note that no one region adequately dif-
ferentiates all bacteria (17), and sequencing of select hypervariable 
regions can yield differing data interpretation (17–19). For exam-
ple, amplification of certain hypervariable regions may bias results, 
leading to under- or overrepresentation of taxa (18), but may  
also be advantageous for distinguishing between certain spe-
cies within a genus (17). Recently, NGS sequencing of the full 16S  
rRNA gene has emerged and, using increasingly sophisticated ana-
lytical methods, may provide both species and strain resolution in 
microbiota communities (20).

After PCR amplification of the selected hypervariable regions, 
the resulting amplicons are sequenced, followed by data “clean-
ing.” Data cleaning involves multiple steps, such as adapter and 
primer sequence trimming, removal of low-quality bases and 
sequences from reads, and removal of sequences matching a con-
trol library such as the PhiX Control (Illumina), chimeric sequenc-
es, and human contaminant reads, as well as chloroplast and mito-
chondrial contaminants. Subsequent analyses lead to organization 
of the sequence data into, most often, operational taxonomic units 
(OTUs). OTUs are distance-based clusters of sequences, initially 
constructed without a reference database (21). An OTU sequence 
identity greater than 97% (or with up to 3% dissimilarity) is typi-
cally estimated to define a species, while OTUs with sequence 
similarities of 95% and 80% are used to define genus and phylum, 
respectively (21). Taxonomic identification is then inferred by 

Table 1. Proposed Koch’s postulates for NGS

OriginalA MolecularB Next-generation sequencingC

•	 The microorganism is found in abundance in 
diseased but not in healthy individuals

•	 The microorganism is able to be isolated from the 
diseased host and grown in pure culture

•	 The cultured microorganism causes disease when 
inoculated into a healthy host

•	 The microorganism can be re-isolated from the 
inoculated host and is the same as the original 
microorganism

•	 Elimination of the microbe from the host  
alleviates disease

•	 The virulence gene is found in pathogenic but not 
nonpathogenic microbial strains

•	 Deletion or inactivation of the virulence gene leads 
to loss of microbe pathogenicity

•	 Reactivation or allelic replacement of the gene 
restores microbe pathogenicity

•	 Individual microorganisms or communities of 
microorganisms, as identified by sequencing, differ 
in abundance, organization, and/or function in 
diseased vs. healthy individuals

•	 Community virulence or functional consequences 
may or may not depend on specific, well-defined 
microbe virulence genes

•	 Community modification and/or elimination  
of specific community members alleviates the 
disease state

AThe first four postulates are derived directly from Koch’s original postulates, whereas the fifth is derived from Evans (138). Koch’s original postulates do 
not account for viruses, parasites, unculturable bacteria, and/or the concept of host colonization with a potential pathogen. BFocuses on genes that make 
a microbe virulent (10, 139). CFocuses on use of nucleic acid sequences rather than culture or entire genes to find emerging pathogens (8, 9).
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refs. 47–49) better characterized species-level differences using 
human colon cancer samples compared with other 16S rRNA 
sequencing pipelines (50). To our knowledge, no studies, as yet, 
have directly compared the Resphera Insight (47–49) pipeline 
species classification with that of shotgun metagenomic sequenc-
ing. Very recently, the Kraken pipeline for shotgun metagenomic 
analysis was expanded to enable 16S rRNA analysis, and results 
show that it is more accurate and up to 300 times faster than 
QIIME (51). However, QIIME includes a wealth of other help-
ful tools, making it more a stand-alone “complete” package. For 
users sophisticated enough to mix-and-match packages, Kraken 
could replace the core QIIME step of 16S read assignment.

A functional profile cannot be directly obtained from 16S 
rRNA sequencing, because the method only characterizes 
sequences from one essential gene. Methods like PICRUSt (Phy-
logenetic Investigations of Communities by Reconstruction of 
Unobserved States; ref. 52) or PICRUSt2 (53) and Tax4Fun (54) 
or Tax4Fun2 (55) aim to predict functional profiles of bacteria 
based on 16S rRNA data. However, the success of these methods, 
when compared with functional potentials obtained via shotgun 
metagenomics, varies with the 16S gene primers used for ampli-
fication (35, 36). Conversely, shotgun metagenomics and RNA 
sequencing consider all the microbial DNA and RNA; thus it is 
possible to more comprehensively predict the functional potential. 
Importantly, a distinct difference between shotgun metagenom-
ics and RNA sequencing is that shotgun metagenomics provides a 
random selection of all genes encoded by the microbes (predictive 
functional potential) whereas RNA sequencing identifies which 
genes are actively being transcribed (active functional profile).

Other considerations in pursuing an NGS method and  
analyses include host contamination, false positives, bias, and 
post-sequencing computational requirements. There is less 
risk of host contamination in 16S rRNA sequencing compared 
with other NGS methods because the gene being amplified and 

one method over the others requires comparison and consider-
ation of study goals. Several recent reviews and books have pro-
vided guides to microbiome analysis (21, 33).

Direct comparisons between NGS methods. Although compari-
sons of 16S rRNA sequencing and shotgun metagenomics exist for 
a variety of samples, including those from humans (14, 15, 34–40), 
laboratory model organisms (13, 39), plants (39, 41), soil (42), and 
water (43), overall, direct method comparisons for human sam-
ples are limited. Comparisons with RNA sequencing and across 
all three sequencing modalities are even more limited (14). Here, 
we address common considerations in choosing an NGS method 
(Table 2). Additionally, we review studies within the past five years 
that have directly compared NGS methods in humans (Table 3).

16S rRNA, shotgun metagenomic, and RNA sequencing can 
all be used to determine what bacteria are present in a micro-
biome; however, the latter two also detect members of other 
domains such as fungi and parasites, as well as viruses. Only RNA 
sequencing examines RNA viruses. With respect to taxonomic 
resolution, an overarching finding of the studies that have com-
pared these methods is that phylum designations are comparable 
(39); however, 16S rRNA sequencing tends to offer less resolu-
tion and sensitivity for detecting changes at the species level and 
cannot detect strain-level changes (13, 34, 43). For example, Jovel 
and colleagues conducted parallel 16S rRNA and shotgun metag-
enomic sequencing on mock bacterial populations with defined 
consortia and found that the 16S rRNA method and software 
pipelines (Quantitative Insights Into Microbial Ecology [QIIME], 
refs. 44, 45; and mothur, ref. 46) effectively resolved sequences to 
the genus level, but shotgun metagenomic sequencing resulted in 
improved genus- and species-level classification (36). This find-
ing has been replicated in other human studies (Table 3 and refs. 
14, 15, 35–40). Interestingly, Drewes et al. compared 16S rRNA 
analysis pipelines and found that the Resphera Insight high- 
resolution taxonomic assignment tool (Resphera Biosciences;  

Figure 1. Bacterial 16S rRNA gene. (A) Percentage sequence identity of conserved and hypervariable regions of the bacterial 16S rRNA gene. Adapted with 
permission from the Journal of Microbiological Methods (17) and Ilona Lehtinen (137). (B) Illustration of conserved and hypervariable regions corresponding 
to A and PCR amplification of the V1–V3 region of the bacterial 16S rRNA gene. Adapted with permission from Humana Press (148). (C) Schematic of 16S 
rRNA gene structure with hypervariable regions (V1–V9) labeled.
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or estimation of read numbers or sequencing depth [see below] 
needed for taxon identification).

Finally, cost must be considered for any project and is argu-
ably one of the most important factors in what type of NGS to ini-
tially perform. The differences in cost between the methods relate 
to the amount and depth of sequencing. Sequencing depth refers 
to the number of times a certain nucleotide base is represented in 
the sequencing reads for a given sample (56). Typically, shotgun 
metagenomics and RNA sequencing analyses require much more 
sequence data than 16S rRNA sequencing, resulting in their higher 
costs. However, a recent study by Laudadio and colleagues sug-
gests that shotgun metagenomics, at lower sequencing depths, is 
comparable in price to 16S rRNA sequencing and still identifies 
more species (38). Notably, this study did not consider other inher-
ent NGS costs, including computational burden and data storage.

In summary, the use of the 16S rRNA gene as a phylogenetic 
marker is efficient and cost effective (52); however, it is subject to 
biases that other microbiome characterization methods are not 
(i.e., choice of hypervariable regions and primer-dependent PCR 
amplification) and can thus result in significant variance in the 
determined microbial composition of a sample. Additionally, 16S 
rRNA sequencing is commonly limited to taxonomic classification 
at the genus level or above (36), as horizontal transfer of the 16S 
rRNA locus and the existence of multiple bacterial species and 
strains that are more than 97% similar can prevent more nuanced 
classification (35, 43). Finally, 16S rRNA analysis provides limit-
ed predicted functional information (14, 52). Conversely, shotgun 
metagenomics and RNA sequencing are more expensive than 16S 
rRNA sequencing but offer far broader taxonomic coverage (i.e., 
species- and strain-level resolution), more accurate functional 
profiling, and the possibility of detecting previously unknown spe-
cies and strains of microbes (36). Although shotgun metagenomic 
and/or RNA sequencing undoubtedly provides more information, 
determining which approach is appropriate depends on the ques-
tion(s) being asked. For instance, if you want to identify the domi-
nant bacteria in a sample, 16S rRNA sequencing is likely the better 
method owing to the lower cost and bioinformatics burden (42). 
We present comparisons herein not to suggest that one sequenc-
ing method or protocol is best for all projects but rather to assist 
readers in selecting the best protocol for their projects.

Technical and individual laboratory issues: sources of variabil-
ity. There are multiple parameters to consider regarding sample 
collection and processing, because variabilities in any of these 
steps can alter NGS data. First, the investigator must choose the 
type of sample for NGS sequencing. Although fecal samples and 
body fluids are easier to collect and permit serial sampling, intra-
luminal fecal samples or tissue samples may provide representa-
tive regional colon or site-specific microbiome characterization. 
Storage conditions can further impact NGS results, and thus this 
information should be reported. The gold standard is immediate 
freezing of samples and storage at –80°C (57); however, samples 
can also be preserved chemically using solutions such as DNA/
RNA Shield (Zymo Research) (58).

The first step in sample processing is DNA or RNA extraction, 
and this step is responsible for the majority, but not all, of experi-
mental variability in microbiome analysis according to the Micro-
Biome Quality Control project (59). Numerous commercially 

sequenced (i.e., the 16S rRNA gene) is specific to bacteria. With 
16S rRNA sequencing, there is also a lower risk of false positives 
due to extensive reference databases and computational error 
correction tools; however, the risk of false positives increas-
es with decreasing sample biomass (33). Conversely, there is a 
higher risk of bias with 16S rRNA sequencing because of prim-
er-dependent PCR amplification bias and differences between 
the variable regions, as discussed above (17–19). Importantly, 
one must also consider the computational expertise and analysis 
required after sequencing. Currently, 16S rRNA sequencing bio-
informatics analysis is less of an undertaking than either shot-
gun metagenomics or RNA sequencing, as there are fewer data 
(i.e., sequencing output from one gene versus all genes) as well 
as several publicly available and user-friendly platforms, like 
QIIME (44, 45) and mothur (46). This makes 16S rRNA sequenc-
ing more accessible to researchers with beginner- and intermedi-
ate-level bioinformatics experience (33). For projects directed at 
detection of specific taxa, pilot data using mock microbial com-
munities can guide experimental choices (e.g., primer sets and/

Figure 2. NGS implementation. Overview of key steps in 16S rRNA gene 
sequencing, shotgun metagenomic sequencing, and RNA sequencing pro-
cesses. 1Host DNA or RNA depletion can be performed (optional steps). 2PCR 
amplification is used to amplify bacterial 16S rRNA gene variable regions 
(16S rRNA amplicon sequencing) or random cDNA fragments resulting 
from RNA reverse transcription for RNA sequencing. DNA-based shotgun 
metagenomic sequencing is optimally done without use of PCR amplifica-
tion to avoid introduction of PCR-associated experimental bias. However, 
in samples with low DNA quantities, PCR amplification of the DNA library 
is sometimes used. 3Commonly Illumina-based sequencing chemistry (33). 
4The taxonomic and functional analyses of NGS data are complex and make 
use, most often, of software available in the public domain.
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sequencing platform (e.g., Illumina MiSeq, NovaSeq). Finally, a 
wide variety of bioinformatics pipelines are available, for both 16S 
rRNA and shotgun metagenomics data, and the choice of compu-
tational and statistical methods can have a critical effect on out-
comes and conclusions (36, 59, 62), including the risk of reporting 
false associations and of missing true ones. While a full review of 
computational methods and their relative strengths and weak-
nesses is beyond the scope of our discussion, Liu et al. (33) provid-
ed a recent review covering dozens of methods.

Overall, variability in any of the steps of NGS sequencing 
(e.g., sample type, sample storage, DNA extraction, PCR ampli-
fication, sequencing technology, read length, and/or bioinfor-
matics analysis) can lead to data variability. There is generally 
not a “right” answer as to the best method or approach. The most 
important principle is that all samples be treated the same to 
facilitate meaningful comparisons between samples in the same 
study. However, as discussed in the next section, great care must 
be taken in comparing results between different studies, as these 
variables may differ.

Challenges of rigor, reproducibility, and reporting. Microbiome 
science is complex, cutting across many scientific fields, includ-
ing microbiology, epidemiology, biology, computational science, 
genomics, and biostatistics. This complexity and the rapid evolu-
tion of approaches within the field have led to the reporting of dis-
parate findings between studies investigating seemingly similar 
patient populations. Thus, increasing attention is now directed to 
developing well-curated and validated databases that are critical 
for accurate analyses, and providing guidance for the consistent 
conduct and reporting of study design, methods, and results of 

available kits exist for DNA extraction, including from Covaris, 
Qiagen, Zymo Research, and others. Typically samples are 
homogenized, but protocols vary substantially from laboratory 
to laboratory (59). Although there is not yet a globally accepted 
gold-standard protocol for DNA or RNA extraction, it is critical 
that all samples be processed in the same manner. Furthermore, 
it is strongly recommended that negative controls be processed 
to better assess the comparability of different NGS runs, nor-
malize across separate NGS runs to limit batch effects, identify 
kit-specific contaminants, and determine whether the detection 
of low-abundance microbes in a sample are of biologic interest or, 
more likely, represent contaminants. Examples of controls include 
(a) storage buffer (e.g., DNA/RNA Shield); (b) DNA extraction kit 
components; and (c) a community standard containing known 
species at known quantities (e.g., Zymo Microbial Community 
Standard [D6300] and Zymo Microbial Community Standard II 
Log Distribution [D6310]).

For 16S rRNA sequencing, the PCR amplification step is also 
a source of variability. As discussed, there are nine hypervariable 
regions in the 16S rRNA gene, and available primer sets typical-
ly amplify only a subset of these regions. Thus, the performance 
characteristics of the primer set chosen will influence the number 
of the analyzable reads (60) as well as the results of the analysis 
(61). For example, one study reports that the V4 primer set yields 
significantly more Bacteroides and lower Firmicutes reads than oth-
er primer sets tested; this is particularly notable given that the Bac-
teroidetes/Firmicutes ratio is a commonly reported metric (60).

The results of sequencing itself also vary with different equip-
ment, and thus, ideally, all samples are sequenced using the same 

Table 2. Comparisons of common microbiome sequencing methods

Method
Amplicon 

(16S, 18S, ITSA) Shotgun metagenomics RNA sequencing

What is sequenced? DNA coding for the 16S, 18S ribosomal  
subunit or ITS Host and microbial DNA Host and microbial RNA

What is the taxonomic resolution? Phylum–genus, sometimes species Species–strains Species–strains

What is the taxonomic coverage? Bacteria, archaea (16S); eukaryotes (18S) Bacteria, archaea, eukaryotes,  
DNA viruses

Bacteria, archaea, eukaryotes,  
DNA and RNA viruses

Are appropriate reference databases available?
Over 3 million 16S gene sequences  

from humans and environmental sources  
are available

Over 100,000 genomes with a bias  
toward human microbiomes

Over 100,000 genomes with a bias  
toward human microbiomes

Does host contamination occur? Limited Yes, but can be mitigated by host  
DNA/rRNA depletion methods

Yes, but can be mitigated by host  
DNA/rRNA depletion methods

Can sequencing data yield a functional profile? Not directly, but the functional profile  
can be predicted computationally

Yes, with appropriate computational  
expertise 

Yes, with appropriate computational  
expertise

What is the minimum input for detection? 10 copies 1 ngB 1 ngB

What is the potential for false positives? Lower due to extensive reference databases 
and error correction tools

Higher due to host DNA contamination  
of draft genomes

Higher due to host RNA/DNA contamination 
of draft genomes

What is the potential for bias? 
Medium to high due to a dependence  
on primers, a targeted variable region,  

and PCR amplification

Lower due to the untargeted nature  
of the methodology

Lower due to the untargeted nature 
 of the methodology

What level of computational skills is required? Beginner–intermediate Intermediate–advanced Intermediate–advanced
A16S rRNA amplicons identify bacteria; 18S rRNA amplicons and internal transcribed spacer (ITS) sequences are most often used to identify fungi or 
parasites. BAlthough 1 ng is considered the minimum input, many sequencing facilities require at least 20 ng. Adapted from Zymo Research (140) and 
Protein and Cell (33).
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Table 3. Recent comparisons of NGS methods for microbial taxonomic classification and functional profiling in human samples

Ref. Sample type and 
population studied (n) Methods Relevant findings

35 Human fecal sample  
(n = 1)

16S rRNA vs. shotgun metagenomic 
sequencing

•	 EquipmentA: Illumina MiSeq 
and HiSeq 2000

•	 V1–V3 16S rRNA gene 
primers 

•	 16S rRNA sequencing detected notable phylum-level changes in Bacteroidetes and 
Actinobacteria compared with shotgun metagenomics. Firmicutes and Proteobacteria 
abundances were similar between methods.

•	 Shotgun metagenomics detected approximately twice as many species as 16S rRNA 
sequencing (Pearson’s correlation coefficient 0.6).

•	 The reference database impacted species-level calls for both methods.

•	 α-DiversityB was lower for 16S rRNA sequencing than for shotgun metagenomics.

15 Geriatric human fecal samples 
(n = 6)

16S rRNA vs. shotgun metagenomic 
sequencing

•	 EquipmentA: Illumina MiSeq, 
HiSeq, and Ion PGM

•	 V1–V2 and V4–V5 16S rRNA 
gene primers

•	 Illumina MiSeq and HiSeq resulted in more reads and detected more species than Ion PGM. 
Illumina HiSeq shotgun metagenomics identified the most species.

•	 Samples clustered by primer type or sequencing platform as opposed to sample donor.  
This observation was more pronounced for 16S rRNA data. For shotgun metagenomics, 
MetaPhlAn (141), followed by Kraken (142), produced the least biased results.C
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Mock bacterial populations  
(n = 3); kefir (n = 1); mouse 
(IL-10−/−) fecal samples (n 

= 3); human fecal and ileal 
tissue samples from patients 

with C. difficile (n = 1) or 
Crohn’s disease (n = 2) and 

healthy controls (n = 3)

16S rRNA vs. shotgun metagenomic 
sequencing

•	 EquipmentA: Illumina MiSeq

•	 V4 16S rRNA gene primers

•	 In general, regardless of the type of sample analyzed, shotgun metagenomic sequencing 
(using BLAST [ref. 143], MEGAN [ref. 144], MetaPhlAn [ref. 141] for analysis) identified  
more taxa and, in particular, species than 16S rRNA sequencing (using QIIME [refs. 44, 45] 
and mothur [ref. 46] for analysis). MetaPhlAn was the fastest and most precise.

•	 Increased sampling depth and decreased sample complexity improved method  
concordance and taxon identification. However, increased sampling depth may also  
enhance detection of low-level environmental contaminants.

•	 α-DiversityB was similar between methods.

•	 Predicted functional profile concordance varied between PICRUSt (52) for 16S rRNA data  
and MEGAN5 (144) for shotgun data.

14
Human fecal sample  

(n = 1) with bacterial spike-
ins

 
16S rRNA vs. shotgun metagenomic 
vs. meta-total RNA sequencingD

•	 EquipmentA: Illumina HiSeq 
2500

•	 V4–V5 16S rRNA gene 
primers

•	 Meta-total RNA sequencingD resulted in higher α-diversityB than 16S rRNA sequencing  
and shotgun metagenomics. Shotgun metagenomics resulted in higher α-diversity than  
16S rRNA sequencing.

•	 Meta-total RNA sequencing detected more genera than 16S rRNA and shotgun metagenomic 
sequencing. 16S rRNA sequencing detected more genera than shotgun metagenomics.
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Pediatric human fecal 
samples: patients with 

Crohn’s disease  
(n = 3), healthy controls 

(n = 3) 

16S rRNA vs. shotgun metagenomic 
sequencing

•	 EquipmentA: Illumina MiSeq 
and HiSeq 2500

•	 V3–V4 16S rRNA gene 
primers

•	 Overall, shotgun metagenomics (using MetaPhlAn [ref. 141] for analysis) identified 3  
times as many species as 16S rRNA sequencing (using MICCA [ref. 145] and QIIME 2  
[refs. 44, 45] for analysis).E

•	 Shotgun metagenomics identified more species than 16S rRNA sequencing at every 
sequencing depth tested. The lowest depth tested was approximately 1 million paired- 
end reads.

40 Human infant fecal samples  
(n = 338)

16S rRNA vs. shotgun metagenomic 
sequencing

•	 EquipmentA: Illumina MiSeq 
and NextSeq 550

•	 V4–V5 16S rRNA gene 
primers

•	 	Shotgun metagenomics identified more species, but fewer taxa at the family and genus 
levels, than 16S rRNA sequencing. Consistent with this observation, 16S rRNA sequencing 
yielded greater α-diversityB at the genus level than shotgun metagenomics.

•	 α-Diversity increased with sequencing depth.

•	 At the genus level, β-diversityF was concordant between methods.

AEquipment used for 16S rRNA, shotgun metagenomic sequencing, or RNA sequencing as indicated. Bα-Diversity (within-sample diversity) can be measured 
using multiple indices that reflect sample richness (number of taxa) and/or evenness (abundance). Commonly used indices in the cited papers are the Shannon 
diversity index (146) and Simpson index (147). These account for richness and evenness of taxa. CThe term “least biased results” indicates that samples 
clustered more by sample than method. D“Meta-total RNA sequencing” refers to a method described by Cottier and colleagues (14) that is akin to shotgun 
sequencing of total RNA but may require lower sequencing depth than shotgun metagenomics. EIt is important to note that the default analysis parameters 
used by Laudadio and colleagues (38) for QIIME2 (44, 45) and MICCA (145) assigned a taxon if a single confidently assigned read was identified. In contrast, 
taxon assignment for shotgun metagenomics analysis was more conservative. In individual papers, these parameters can be modified in the analyses and may 
impact the results. Fβ-Diversity (between-sample diversity) is commonly measured by principal coordinate analysis using the Bray-Curtis distance. 
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microbiome research. In 2018, Schloss provided a thoughtful 
and pragmatic essay for translational researchers to consider the 
threats to rigor, reproducibility, and generalizability within micro-
biome research (63). Others have called for a centralized robust 
curated data repository for microbiome data adherent to FAIR 
(findable, accessible, interoperable, and reproducible) princi-
ples (64). Consistent with this need, the FDA has established an 
evolving quality-controlled and highly curated public microbial 
reference database (FDA-ARGOS) for microbiome research (65), 
although this database is still relatively small. Most recently, the 
STORMS (Strengthening the Organization and Reporting of 
Microbiome Studies) 17-point Microbiome Reporting Checklist 
was proposed as a guide for researchers, reviewers, and readers for 
the presentation, assessment, and understanding of microbiome 
research across studies (66, 67). Although STORMS was devel-
oped through a strong iterative process, it is based on the analysis 
of only one paper and has been minimally used to date (66). None-
theless, previous reporting guidelines — e.g., CONSORT (Con-
solidated Standards of Reporting Trials) — improved the quality 
of clinical trial reporting (66), and such results support calls for 
more structured microbiome research reporting. Improvement 
of microbiome science communication and of the ability to 
cross-compare studies is essential for human microbiome studies 
to yield progress in applying microbiome science to patient care.

Essential considerations in collection of clinical metadata. 
Beyond the complexities of designing the laboratory, computa-
tional, and statistical approaches to NGS-driven human studies, 
the investigator must also consider what and how much clinical 
metadata to collect. Age, sex, and geography are fundamental as 
each impacts microbiome composition and likely function (68, 
69). However, given the interindividual variability in the micro-
biome (70) and disease-associated data (discussed below), more 
nuanced considerations of individual exposures, both current 
and over time, may be needed. These include environmental 
exposures associated with migration (71), diet and food addi-
tives (72), and antibiotic and non-antibiotic medications (73, 
74). While genetic impacts on the human microbiome have been 
downplayed in recent literature (75), this is likely short-sighted, as 
we do not yet understand how microbial communities function, 
and data suggest that select members of the microbiome serve 
as functional drivers that intersect with host genes to regulate 
clinical outcomes (76–78). This broad field of human exposures 
that impact health and disease is termed the “exposome” and, 
while impossible to fully capture in most studies, deserves careful 
thought in study design, data accrual, and interpretation (79).

Relevance of NGS to clinical and translational 
research
Although extremely useful in investigating disease mecha-
nisms that may inform human translational research, herein, we 
will not consider the enticing but likely overinterpreted rodent 
microbiome studies (80). Instead, given the breadth of available 
data, we focus on a few illustrative examples of human micro-
biome analyses to indicate the robust impact that NGS-derived 
microbiome data can have on our thinking about human diseas-
es; such results implicate the potential for human microbiome 
science to impact clinical care (81).

Nutrition and metabolism. In the very active area of investi-
gation concerning nutrition and metabolism (82), we provide a 
few seminal observations that may help guide considerations in 
NGS microbiome and implementation research. Only key high-
lights from each paper are presented, and the reader is referred 
to the individual publications for further details. In 2011, Wu 
and colleagues provided human data strongly linking diet and 
gut microbiome composition (83). This feeding study identified 
that a diet change (low fat/high fiber versus high fat/low fiber) 
led to detectable gut microbiome changes within 24 hours, with-
out perturbation of overall compositional microbiome structure. 
These data provide insight into rapid diet-dependent microbi-
ome shifts, but suggest that long-term diet is key to overall gut 
microbiome structure and likely function. O’Keefe and col-
leagues demonstrated that a mere 2-week switch in diet, from 
a US-based Western diet (high fat/low fiber) to a rural African 
diet (low fat/high fiber) or vice versa, led to remarkable recip-
rocal changes in mucosal inflammation and proliferation as well 
as metabolic health indicators in African American and rural 
South African populations (84). In a very detailed study of indi-
vidual diet and health impact, Zeevi and colleagues identified, 
unexpectedly, the wide variability in human diet metabolic pro-
cessing and physiologic impact. Namely, postprandial glycemic 
response to identical meals and combination foods like pizza 
varies dramatically between individuals, but can be predicted 
using a machine learning algorithm that integrates microbiome 
NGS data and other inputs (85). For example, pizza may not sig-
nificantly alter the metabolism of one person but may induce 
hyperglycemia in another. Lastly, the Gordon laboratory, based 
on at least a decade of investigations integrating rodent-based 
experimental and human studies, provided the first microbiota- 
directed complementary food prototype, termed MDCF-2. This 
proof-of-principle, prospective, randomized study was conduct-
ed in a population of children with moderate acute malnutrition 
in Bangladesh. It yielded strong evidence that a diet composed of 
locally sourced foods could improve weight-for-length z scores 
in 3 months but also identified that the z scores declined quickly 
after MDCF-2 supplementation withdrawal (86). It remains to be 
determined whether this diet, locally sourced from Bangladeshi 
foods, will yield similar results in other global locales and/or 
whether the MDCF development process can be streamlined to 
yield products able to promote global nutritional health equity.

The skin in health and disease. The skin microbiota is essential 
for protection against invading pathogens. One remarkable aspect 
of the skin microbiome is its regional diversity whereby the local 
(e.g., ear versus navel) microbiome varies, possibly because of dif-
ferential environmental exposures (70). The accessibility of the 
skin and ease of sampling have fostered exemplary longitudinal 
studies (needed in other areas of microbiome science) of condi-
tions like atopic dermatitis. This work provides insight into the 
skin microbiome and disease-associated bacterial strain fluctua-
tions, although disease mechanisms require further study (87, 88).

Early life exposures. Microbiome analyses of birth cohorts and 
early-life exposures underpin our fundamental understanding of 
development (89), exposure impacts (e.g., cesarian versus vaginal 
delivery [ref. 90], antibiotics [ref. 91]), and disease onset (e.g., 
childhood asthma, atopy [ref. 92]). This work highlights that the 
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Development of therapeutics from NGS and the 
microbiome
To date, there are no FDA-approved therapeutics based on NGS or 
derived from the human microbiota or microbiome. Nonetheless, 
this is a rich area of research, and we highlight some important 
and ongoing work in the next sections.

Whole community transfer: fecal microbiota transplantation. 
Fecal microbiota transplantation (FMT) is an ancient therapy 
(107), having been employed as early as the 4th century BCE in 
China, and has been proposed as the method most likely to suc-
ceed in manipulating pathophysiologically complex diseases (108). 
FMT is used primarily for the treatment of Clostridioides diffi-
cile disease but is also being explored, with variable clinical out-
comes, as a therapeutic for other gastrointestinal (109, 110) and 
non-gastrointestinal diseases (111, 112). Key limitations of FMT, as 
currently used, are its inherent lack of quality control and impre-
cision, combined with our weak understanding of the microbes 
and mechanisms by which FMT may confer benefit. Furthermore, 
enthusiasm for the use of FMT is now more restrained with the 
emergence of SARS-CoV-2 (live virus is present in feces; refs. 113, 
114), safety concerns (115, 116), deaths (117), FDA warnings (118), 
and more stringent screening requirements (119). Recent analy-
sis, with improved delineation of variables impacting FMT, indi-
cates that its outcomes, even with C. difficile disease, may not be 
as robust as previously suggested by the case report literature (116, 
120). However, promising microbiome community–based quali-
ty-controlled FMT products (e.g., SER-109, in ECOSPOR clinical 
trials; and RBX2660, in PUNCH clinical trials; ref. 121), based, at 
least in part, on NGS, are being studied in prospective, randomized 
clinical trials (SER-109, ref. 122; RBX2660, refs. 123, 124; >400 
studies at ClinicalTrials.gov, accessed November 27, 2021). Most 
recently, a phase III, double-blind, placebo-controlled trial of SER-
109, an oral microbiome therapeutic composed of human stool–
derived live Firmicutes bacterial spores, reported efficacy superior 
to that of placebo in lowering rates of C. difficile recurrence in all 
age groups studied (recurrence, SER-109 vs. placebo, 12% vs. 40%; 
relative risk, 0.32; 95% confidence interval, 0.18–0.58, P < 0.001). 
The safety profile was similar to placebo (125). FMT and microbial 
replacement products require more study to understand the mech-
anisms, microbes, and durability by which these therapeutics alter 
gut microbiome function and drive clinical outcomes (126).

Additions to the host microbiome: prebiotics and probiotics. Both 
untargeted and targeted approaches to modulate the function 
of the microbiome are being studied, each of which utilizes and/
or requires NGS to assess impact. The first and most prevalent 
untargeted example over time has been the ingestion of over-the-
counter prebiotics and probiotics. Prebiotics are substrates (e.g., 
fiber) that are consumed by gut microbes, whereas probiotics are 
live organisms ingested to confer health benefits. Because most 
prebiotics and probiotics are not subject to regulatory oversight, 
the products can be highly variable (127). Recent data, for exam-
ple, have demonstrated a lack of benefit of the most commonly 
used probiotic globally, Lactobacillus rhamnosus (LGG or R0011), 
studied with or without L. helveticus R0052, in childhood diarrhea 
(128, 129). Furthermore, the colonization by and effect of probiotic 
strains appear to vary significantly between individuals (82). None-
theless, another recent study, using fecal microbiome analyses of 

early-life fecal compositional assembly and metabolome associ-
ate with the emergence of childhood atopy and asthma years later, 
in part because of immune development dysregulation (92, 93). 
It also underpins the importance of microbiome analyses for the 
prediction of disease development in additional, large, longitudi-
nal birth cohort studies. One example is a study of 100,000 moth-
er-baby pairs in the Greater Bay Area in China, led by the Faculty 
of Medicine at the Chinese University of Hong Kong (64).

Defining outbreak transmission, source, and pathogenicity. NGS 
studies, both whole-genome and metagenomic sequencing, along 
with detailed epidemiologic analyses have been instrumental in 
tracking and identifying the source of multi-drug-resistant patho-
gens, persistent even over extended time periods in a hospital (94, 
95). Pathogen identification enabled interventions to eliminate 
the infection source and understand hospital spread. Further-
more, NGS studies of outbreak human Burkholderia strains, isolat-
ed from individuals with cystic fibrosis, led to the identification of 
bacterial genes promoting this bacterium’s human host adaptation 
and virulence (96). Identifications such as these offer insights for 
new therapeutic targets.

Impact of NGS on disease diagnosis. A clinical benefit of micro-
biome NGS may be to predict disease risk, akin to the established 
use of human genome NGS to identify disease risk. Microbiome 
NGS to predict disease risk is not yet validated for any disease, but 
progress is occurring. For example, as described above, longitudi-
nal studies in children have begun to link microbes to risk for onset 
of asthma and atopic conditions (92, 93). Another example is the 
use of the colon microbiome (i.e., colon mucosal or fecal samples) 
to predict colorectal cancer (CRC) risk. To date, although metag-
enomic analyses detect microbial communities reflective of CRC, 
detection of communities reflective of precancerous lesions (e.g., 
colonic polyps) is limited (97, 98). Similarly, blood-based tran-
scriptomes best detect advanced-stage cancers (99). This suggests 
that NGS methods need further development to detect early-stage 
disease when intervention may enhance patient prognosis (100).

The clinical microbiology laboratory is beginning to use 
microbial NGS methods for disease diagnosis, particularly to 
identify potential infectious etiologies of chronic illnesses. Use of 
NGS has emerged to define undiagnosed CNS infections (12, 101, 
102), respiratory pathogens (103), and other difficult-to-diagnose 
or undiagnosed infectious diseases. Metagenomic sequencing is 
attractive for detecting suspected, but undiagnosed, infections 
because nucleic acid analyses can, theoretically, detect bacteria, 
viruses, fungi, and parasites. This extensive detection potential 
could limit the numerous tests required to assess a broad array 
of putative pathogens in patients without diagnoses. Hurdles 
include differentiating colonization from infection, limiting con-
taminants, developing efficient, clinical sample–specific methods, 
achieving analytical standardization, and continually working to 
improve data security to protect patient privacy. Cost is another 
hurdle, as NGS method validation can be very expensive (12).

Research is needed to define how use of microbiome NGS can 
advance patient care, solve the source of outbreaks (e.g., Klebsiella 
[ref. 94] and Sphingomonas [ref. 95]), and identify and character-
ize emerging pathogens (e.g., SARS-CoV-2 [ref. 104]). The most 
difficult challenge for clinicians and translational scientists is the 
interpretation of NGS data for clinical application (12, 105, 106).
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or longitudinal, to apply the science to human health or disease with 
confidence. Investigative needs include integrative human-centric 
microbiome studies, broader and more consistent integration of 
the exposome, a better understanding of the putative unique con-
tributions of different analytical approaches, and cross-validation 
of data sets between studies of disease processes and populations. 
Ultimately, NGS results will be complemented with non-NGS meth-
ods such as metabolomics and proteomics to understand microbial 
functions in health and disease. Critically, data must be interpret-
ed with consideration of clinical plausibility. Furthermore, and in 
parallel, investigators should be explicit about gaps in knowledge or 
new directions for additional clinical studies.

Application of NGS data and microbiome investigations in clin-
ical medicine is in its infancy, and thus contains both promise and 
uncertainty. The current paucity of carefully designed prospective 
and longitudinal human studies highlights a rich opportunity for 
clinical translational scientists. By leveraging the cross-disciplinary 
nature and complexities of microbiome science, we can advance 
our understanding of disease development, progression, diagno-
sis, and therapy, ultimately benefiting the health of patients.
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individuals in rural Thailand, identified that Bacillus, a spore-form-
ing bacterium, was associated with reduced human Staphylococcus 
aureus colonization, a cause of systemic antibiotic-resistant infec-
tions. This outcome was ascribed to Bacillus production of lipo-
peptides (fengycins) that inhibit S. aureus quorum-sensing mech-
anisms (130). Thus, development of rational precision probiotics 
based on NGS and microbiome research is likely feasible and is 
another key microbiome research opportunity.

Preclinical targeted NGS-linked tactics to modulate the micro-
biome. Multiple approaches, under development, may allow for 
precision manipulation of the gut microbiome and have potential 
to impact local and/or systemic disease processes. These include 
(a) inhibition of gut bacterial enzymes to modify metabolic capa-
bilities; (b) selective bacteriophage-mediated depletion of dis-
ease-inducing or undesirable bacterial strains; (c) gut colonization 
with engineered strains that deliver a therapeutic payload; and (d) 
direct genetic modification of the in situ microbiome (131). Excit-
ingly, human proof-of-principle studies already exist for some of 
these approaches. For example, bacteriophages have been success-
fully used to treat systemic antimicrobial-resistant infections (132, 
133), and an engineered, oral E. coli Nissle strain promoted arginine 
synthesis from ammonia in healthy volunteers (134) and is being 
developed as a potential treatment for hyperammonia conditions 
(e.g., hepatic encephalopathy).

The microbiome as a source of new drugs. Many antibiotics, 
including penicillin, are natural products or their derivatives. As an 
extension of this prior success, high-dimensional, multicomponent 
screening strategies have recently been used to identify antimi-
crobials with novel mechanisms of action from uncultured soil or 
marine microbiome members (135, 136). Whether these microbi-
ome derivatives will be successful in humans remains to be tested.

Conclusions
Microbiome science is moving toward microbiome precision med-
icine, but we still lack sufficient clinical data, either cross-sectional 
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