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How malignant B cells resist 
CAR-T therapies
Cell and antibody therapies directed 
against surface molecules on B cells, e.g., 
CD19-targeting chimeric antigen receptor 
T cell therapy (CD19 CAR-T), are now stan-
dard treatments for patients with chemore-
fractory B cell acute lymphoblastic leuke-
mias (B-ALL) and other B cell malignancies. 
However, upfront treatment failure and 
early relapse rates range from 20% to 60% 
(1, 2). In this issue of the JCI, Aminov, Gir-
icz, and co-authors found that B-ALL cell 
lines expanding through CD19-targeted  
therapy expressed lower levels of CD19 
RNA and protein than did parental cells, 
observations they extended to nine pedi-
atric patients with B-ALL relapsing after 

CD19 CAR-T (3). This finding in and of 
itself was unsurprising, since CD19 loss 
had already been described in clinical tri-
als of CD19 CAR-T to treat B-ALL (4, 5). 
There was, however, another reduction. 
Compared with parental cells, B-ALL cells 
resistant to CD19-targeted therapy, in the 
patients as well as in vitro, expressed less 
CD22, even though there was no CD22-tar-
geted treatment to select for such suppres-
sion. This observation has immediate clin-
ical relevance, since CD22 CAR-T, as well 
as dual-targeting CD19/CD22 CAR-T, is 
in clinical trials as an alternative or com-
plement to CD19 CAR-T (6) — the results 
from Aminov, Giricz, and co-authors pre-
dict CD22 CAR-T are unlikely to salvage 
CD19 CAR-T resistance (3).

Candidate targets for salvage 
therapy
Fortunately, Aminov et al. revealed alter-
native candidate targets. The B cell recep-
tor (BCR) signals via Bruton’s tyrosine 
kinase (BTK) and dictates maturation, 
proliferation, and life and death of cells 
committed to the B cell lineage (7, 8). 
Aminov, Giricz, and colleagues found that 
malignant B cells resisting CD19-target-
ed therapy preserved or upregulated BCR 
components and BTK, even as they down-
regulated CD19 and CD22 expression 
(3). These observations have functional 
and potentially therapeutic implications. 
B-ALL cells resistant to CD19-targeted 
treatment were several-fold more sen-
sitive to the growth inhibitory effects of 
small-molecule inhibitors against BTK 
and downstream MEK than were parental 
B-ALL cells. Importantly, several BTK and 
MEK inhibitors have been approved by the 
FDA, although not to treat B-ALL.

Darwin and Lamarck
Selection by chemotherapy or CAR-T for 
malignant B cells containing inactivating 
mutations and/or deletions of key apop-
tosis/cell death genes, e.g., TP53 (encod-
ing p53), CDKN2A (encoding p16), and 
PMAIP1 (encoding NOXA), exemplifies 
Darwinian processes in resistance onset 
and propagation (1) (Figure 1). However, 
coordinated downregulation of CD19 and 
CD22, simultaneous with BCR and BTK 
preservation or upregulation, seems an 
unlikely consequence of random or acci-
dental genetic events. That is, an exclu-
sively Darwinian model, especially over 
the short time-scales observed experi-
mentally by Aminov et al., seems unlike-
ly, and another process must explain how 
these phenotype changes emerge and sta-
bilize. CD19 is normally activated upon 
hematopoietic stem cell commitment into 
the B cell lineage, and then progressively 
increases in expression with onward B cell 
lineage maturation. It functions as a core-
ceptor or accessory to the BCR/BTK path-
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Cell and antibody therapies directed against surface molecules on B cells, 
e.g., CD19-targeting chimeric antigen receptor T cells (CD19 CAR-T), are 
now standard for patients with chemorefractory B cell acute lymphoblastic 
leukemias and other B cell malignancies. However, early relapse rates remain 
high. In this issue of the JCI, Aminov, Giricz, and colleagues revealed that 
leukemia cells resisting CD19-targeted therapy had reduced CD19 but also 
low CD22 expression and were sensitive to Bruton’s tyrosine kinase and/
or MEK inhibition. Overall, their observations support the evolution of 
resistance following a Lamarckian model: the oncotherapy directly elicits 
adaptive, resistance-conferring reconfigurations, which are then inherited 
by daughter cells as epigenetic changes. The findings prompt reflection also 
on the broader role of epigenetics in decoupling of replication from lineage 
differentiation activation by the B cell lineage master transcription factor 
hub. Such oncogenesis and resistance mechanisms, being predictable and 
epigenetic, offer practical opportunities for intervention, potentially non-
cross-resistant and safe vis-à-vis present cytotoxic and CAR-T treatments.
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daughter cells via epigenetic inheritance. 
Moreover, persistence of the environmen-
tal cue, e.g., CD19 CAR-T, can be expected 
to reinforce the adaptations in daughter 
cells, since these shifts after all emerge 
organically and predictably from cell 
physiology networks. Aminov, Giricz, and 
colleagues found that the suppression of 
CD19 and CD22 was indeed an epigenetic, 
Lamarckian process and not genetic (3). 
There is, thus, a further therapeutic impli-
cation: epigenetic enzymes mediating 
repression of CD19 and CD22 also consti-
tute candidate targets for salvage therapy.

The larger context
It would be tunnel-visioned, however, to 
ignore that, in fact, hundreds of B cell lin-
eage differentiation genes are aberrantly 

supported by the observation by Aminov 
et al. that the master transcription factor 
(MTF) SOX4 was upregulated in the resis-
tant cells (Figure 1). Viewed in this light, 
other predictions can be made, e.g., CD10 
could be a potential alternative to CD22 
as a surface target for salvage therapy — 
CD10-targeting CAR-T is being explored 
(10) (Figure 1).

Lamarck proposed directed evolu-
tion such that the environment instructs 
pro-fitness modifications (aka adaptation) 
heritable by subsequent generations (11) 
(Figure 1). Although it is difficult to trans-
mit adaptation occurring at a somatic lev-
el into a separate germline compartment, 
unicellular neoplastic evolution faces no 
such difficulties because adaptive shifts in 
gene expression are readily propagated to 

way, signaling into B cell lineage cells via 
the PI3K/AKT pathway, and in this way 
contributes to B-lineage differentiation 
and specialization (7–9). Given this normal 
function of CD19, insofar as malignant B 
cells survive weapon payloads attached 
to CD19-targeting treatments, the CD19 
targeting itself will affect the cellular 
phenotype, either by the direct inhibition  
of CD19 function, or indirectly through 
the selection of cells on the lower end of 
the CD19 expression spectrum (Figure 
1). The state of having less CD19 func-
tion and expression can be expected to 
favor maturation arrest early in the B cell 
lineage differentiation continuum, when 
CD19 and CD22 expression is lower but 
BCR and BTK expression is preserved 
(Figure 1). That this is the case is also 

Figure 1. Phenotype of B cell malignancies at diagnosis and resistance depends on the expression of B cell lineage MTFs during different stages of B cell 
lineage differentiation. (A) In B cell malignancies, treatment resistance occurs via two evolutionary models: A Darwinian model for treatment resistance 
occurs when a preexisting mutation confers resistance and is selected for during treatment, e.g., selection by chemotherapy for TP53 mutations and/or 
deletions. Alternatively, a Lamarckian model predicts that an oncotherapeutic can directly trigger adaptive responses in malignant cells. The baseline MTF 
configuration of the cells constrains the range of adaptive shifts, which are propagated to daughter cells via epigenetic mechanisms. Notably, both models 
can act concurrently. (B) Coordinated shifts in the expression of lineage MTFs and surface receptors occur during normal B cell lineage differentiation. 
Treatments that target CD19 or BTK affect inputs into the lineage MTF circuit and may alter malignant phenotypes in a pattern dictated by the baseline 
MTF configuration and B cell lineage differentiation. (C) CD10 and CD19 are expressed at different stages in B cell lineage differentiation and present tar-
geting opportunities. B cells undergoing differentiation that have been targeted by CD19 treatments may shift phenotypes to confer resistance but remain 
susceptible to alternative targeted therapies such as anti-CD10.
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that can immediately be repositioned (3). 
Epigenetic inheritance of these resistance 
mechanisms prompts a widening of per-
spective to recognize the central role of 
aberrant epigenetic repression of lineage 
differentiation genes in causing malig-
nant self-replication — the beating heart 
of malignancy — resistant or otherwise. 
This is a relatively neglected but druggable 
space that offers non-cross-resistance with 
chemotherapy and CAR-T therapies. Che-
motherapy and CAR-T treatments must 
harness key apoptosis and cell death genes, 
such as TP53, CDKN2A, and PMAIP1, in 
order to terminate malignant replications. 
Thus, in a Darwinian process, malignant B 
cells that are primary-refractory or relapsed 
after such treatments may contain inac-
tivating mutations or deletions of these 
genes (1). Restoring the ability of malignant 
B cells to activate onward lineage differen-
tiation programs forces cell-cycle exits even 
if key apoptosis/cell death genes are deleted 
and absent, meaning that treatments that 
inhibit repressing epigenetic enzymes to 
thereby resume lineage maturations can be 
non-cross-resistant with chemotherapy or 
CAR-T (19, 22). Moreover, some drugs that 
do this, e.g., decitabine to deplete DNMT1, 
can be used in ways that are not cytotoxic 
to normal dividing cells, including normal 
immune cells that are utilized by immuno-
therapies and autologous CAR-T therapies 
(19, 25). There are, thus, untapped opportu-
nities to remedy mechanisms of resistance 
and even root-cause malignant self-repli-
cation that are distinct from treatment con-
ventions attempting to impose cell death.
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epigenetically repressed to result in B-ALL 
in the first-place. Even apparently so-called 
mature B cell malignancies, such as chronic 
lymphocytic leukemia and multiple myelo-
ma, display aberrant epigenetic repres-
sion of final B cell specialization programs 
(12–15). A few of the TFs expressed in cells 
are MTFs that collaborate in hubs to gov-
ern the expression of other TFs and thou-
sands of genes, thereby dictating cell fates 
and functions (16). A central, deterministic 
role for the B cell lineage MTF hub explains 
why, confusingly, it serves dual functions as 
a tumor suppressor and as an oncogene in 
B cell lineage transformation. The tumor 
suppressor role is shown by partial loss of 
the hub’s function, e.g., by inactivating 
mutations and/or deletions of individual 
lineage MTFs, e.g., IKZF1 or PAX5. Addi-
tionally, epigenetic enzymes that lineage 
MTFs recruit in order to remodel lineage 
differentiation genes for activation — 
coactivators — are recurrently mutated and 
deleted (17, 18). Conversely, genes encoding 
for repressing enzymes in the lineage MTF 
hub, also known as corepressors, may be 
amplified. These genetic alterations impair 
the ability of the lineage MTF hub to cou-
ple high-grade replications with lineage- 
committed differentiation. Stated another 
way, imbalances among the hub’s core-
pressors and/or coactivators preserve the 
activation of replication genes, which are 
constitutively accessible — in other words, 
open on Sundays! — but repress lineage dif-
ferentiation genes, which do require chro-
matin remodeling for activation (19–22). 
On the other hand, these hubs are similar 
to oncogenes, in that the residual lineage 
MTFs in the hub are cancer addictions upon 
which malignant B cells depend to exist and 
replicate (23, 24).

Conclusions
In clinical reality, salvage treatments 
for refractory and relapsed malignancy 
should offer not just a non-cross-resistant  
pathway of action vis-à-vis preceding failed 
treatments, but also better safety, since 
patients’ physiologic reserves may well be 
depleted by everything they have already 
gone through. The observations by Aminov, 
Giricz, and colleagues related to resistance 
to CD19-targeted treatment provide prac-
tical, useful guidance, in that they point to 
alternative molecularly targeted, nonche-
motherapeutic options for salvage therapy 
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